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A method for suppressing the acoustic radiation of flexible coupler link with piezoelectric
elements is developed. According to the result of wave number analysis of the coupler link,
it is found that not all of the components contribute to the acoustic radiation. Based on this
fact, a new equation of motion the configuration of which vector directly reflect the
performance of structural acoustic radiation is obtained by taking a set of transformation
on the equation describing the vibration of the structure. Thus, the problem of acoustic
control is successfully transformed to the problem of vibration control. Subsequently, a
quadratic optimal sound radiation control method is developed, and the validity of the
method is shown by some simulation results.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

With the development of science and technology, modern mechanisms tend to work with
more high speed, while the mass tends to be more light. As a result, the mechanisms have
an aptitude to vibrate when they suffer exterior excitations, and strong acoustic radiation
is produced. High-speed mechanisms are widely used in industries, whose structural
acoustic radiation contributes significantly to the noise pollution. So it is necessary to look
for effective methods to suppress the structural acoustic radiation.
To realize the attenuation of structural acoustic radiation, one method is to attach some

sound absorption materials with great damping factor in the original system [1, 2]. This
method is widely used for high-frequency disturbance, but it is not effective for low-
frequency disturbance. In addition, it will increase the mass of the mechanism. Another
effective way is the active structural acoustic control (ASAC) method. Knyasev and
Taratakvskii [3] presented this idea early in 1967, but unfortunately, it was not advanced
due to the limit of relative techniques. In 1986, Taratakvskii and Vylayshev [4] presented
another paper on ASAC, which provided a new feasible way to suppress structural
acoustic radiation. ASAC apply secondary force to suppress the vibration of the structure
so as to realize the goal of suppressing the structural acoustic radiation. ASAC can
thoroughly suppress the potential of structural acoustic radiation, which overcomes the
difficulty of effort to attenuate the noise in a three-dimensional sound field. Especially, in
the past two decades, the technique of microprocessor has made great progress, which
makes it possible to implement real-time control. Furthermore, the development of
material science provides us more choice in structural acoustic control. Since Fuller et al.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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[5, 6] successfully apply piezoelectric actuators and sensors in the structural acoustic
control in 1980s, considerable attention has been paid on the application of the smart
materials in structural acoustic control. Piezoelectric transducers have the advantage of
light mass, broad-frequency region, easily to be bonded to or embedded in structures,
which is much convenient for placement of the apparatus of control and measurement.
Acoustic radiation are produced accompanied with the vibration of the structure, so we

carry out our research based on the technique of structural vibration control. The research
on the vibration control of flexible links has made a great progress in the past 20 years.
Sung and Chen [7] attempted to control the elasto-dynamic response of a flexible linkage
mechanism consisting of rigid crank and coupler links and a flexible follower link using
piezoelectric elements as actuators and sensors. On the basis of the independent modal
control method, Zhang et al. [8] studied the active vibration control problem for the
flexible mechanisms all of whose members were considered as flexible. Recently, Zhang
et al. [9, 10] presented a methodology for actively controlling the vibration response of
high-speed flexible linkage mechanisms with bonded piezoelectric elements based on
complex mode theory.
But it is a pity that there are so few papers on acoustic radiation control of flexible

mechanisms. Most papers on structural acoustic radiation are restricted within the study
on beams or plates with simple boundary conditions. In this paper, the wave number
analysis of the structural acoustic radiation is carried out on the flexible coupler link of a
flexible linkage mechanism. Based on the result of the analysis, a new equation of motion
whose configuration vector directly reflects the performance of structural acoustic
radiation is constructed. A quadratic optimal control method is developed. At last,
simulation is implemented to verify the validity of the methodology.

2. WAVE NUMBER ANALYSIS

The system studied is a planar linkage mechanism whose crank rotates at a constant
speed (Figure 1). To simplify the process of analysis, crank and follower link is assumed to
be rigid, only the coupler link is flexible. Though it is a two dimensional problem for
vibration analysis, the acoustic analysis is a three dimensional problem. As shown in
Figure 2, the local co-ordinate of the coupler link is OXYZ; which moves with the link.
The coupler link locates in the XY plane.
Assuming that the transverse displacement of the coupler link is obtained, it is described

as follows:

qðx; tÞ ¼ WðxÞejot; ð1Þ
Figure 1. Crank-rocker mechanism.



Figure 2. Local co-ordinate system.
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where q is the transverse displacement of the coupler link and W is the magnitude of the
displacement.
The wave number spectrum of equation (1) can be obtained by taking spatial Fourier

transformation

*qqðkx; tÞ ¼
Z 1

�1
qðx; tÞe�jkxx dx; ð2Þ

where kx is the wave number of the coupler. According to the Euler equation [11], on the
surface of the structure, the relationship between the sound field and the structure can be
described as

r
@2qðx; tÞ

@t2
¼ �@pðx; z; tÞ

@z

����
z¼0

; ð3Þ

where r is the density of the air and p is the pressure of the sound field.
The pressure can be written as

pðx; z; tÞ ¼ Pejðkxx�kzzÞejot; ð4Þ

where kz is the wave number of the sound in the z direction and k ¼ o=c; o is the angular
frequency of the disturbance, and c is the spread speed of sound in air.
Substituting equation (4) into equation (3) yields

�ro2qðx; tÞ ¼ jkzpðx; 0; tÞ: ð5Þ

Equation (5) can be transformed to wave number form by spatial Fourier
transformation

*ppðkx; 0; tÞ ¼ jro2

kz

*qqðkx; tÞ: ð6Þ

The acoustic power of the coupler link is given by [12, 13]

P ¼ 1

T

Z T

0

Z
L

1

2
Re pðx; 0; tÞ@qnðx; tÞ

@t

� �
dL

� �
dt; ð7Þ

where T is the period of the disturbance, the inner integral is carried out along the surface
of the coupler link, the pressure and the transverse displacement can be obtained by taking
inverse wave number transform into equations (2) and (6). At last, equation (7) can be
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expressed as

P ¼ 1

T

Z T

0

Z l

0

1

2
Re

1

2p

Z 1

�1

jro2

kz

*qqðkx; tÞejkxx

��
dkx

�jo
2p

Z 1

�1
*qq�ðk0

x; tÞe�jk0
xx dk0

x

�
dx

�
dt: ð8Þ

Defining the transverse displacement qðx; tÞ ¼ 0 out of the structure field, namely

qðx; tÞ ¼ 0 ðx50 or x > lÞ: ð9Þ

Then we can expand the integral bound from the structure surface to the whole region
ð�1;þ1Þ; and change the sequence of integral, yielding

P ¼ ro3

8Tp2

Z T

0

Z 1

�1

Z 1

�1
Re

*qqðkx; tÞ *qq�ðk0
x; tÞ

kz

�� Z 1

�1
ejkxxe�jk

0
xx dx

� ��
dkx dk0

x

�
dt

¼ ro3

4Tp

Z T

0

Z 1

�1
Re

j *qqðkx; tÞj2

kz

" #
dkx

( )
dt: ð10Þ

Since in the integral field, g ¼ 0; then kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x

p
; the integral above will be real only if

jkxj4k; then the radiated sound power can be rewritten as

P ¼ r0o
3

4Tp

Z T

0

Z k

�k

j *qqðkx; tÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x

p dkx

( )
dt: ð11Þ

The equation above reveals the fact that in the wave number spectrum of the vibration of
the coupler link, only the components whose wave numbers satisfy kx 2 ½�k; k� have
contributions to the acoustic radiation, while the rest of the components in the wave
number spectrum do not have contributions to the structural acoustic radiation.

3. RECONSTRUCT THE EQUATIONS OF MOTION

The equation of motion for controlled coupler link is given by [9, 14]

M.qqðx; tÞ þ C’qqðx; tÞ þ Kqðx; tÞ ¼ DuðtÞ þ FðtÞ; ð12Þ

where qðx; tÞ is the vector of transverse displacement, uðtÞ is the vector of control force,
FðtÞ is the vector of disturbance, D is the distribution matrix of the control force, and M;
K; C are the equivalent mass, stiffness, damping matrices respectively.
According to the discussion above, the transverse displacement qðx; tÞ cannot reflect the

radiated sound power directly. In the structural wave number spectrum *qqðkx; tÞ of the
coupler link, only those wave numbers kx 2 ½�k; k� have contributions to the acoustic
radiation.
According to the expansion theorem, the transverse displacement qðx; tÞ can be

rewritten as

qðx; tÞ ¼
XNm

i¼0
fiZi ¼ Fg; ð13Þ

where Nm is the number of truncated modes, F is the matrix including the Nm eigenvectors,
g is the vector of modal co-ordinate. Taking wave number transformation on equation
(13) yields

*qqðkx; tÞ ¼
Z 1

�1

XNm

i¼0
fiZi

 !
e�jkxx dx ¼

XNm

i¼0

Z 1

�1
fie

�jkxx dx Zi

� �
: ð14Þ
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Then taking inverse wave number transformation equation (14) in the region kx 2
½�k; k�; one obtains

pðx; tÞ ¼
Z k

�k

XNm

i¼0

Z 1

�1
fie

�jkxx dxZi

� �" #
ejxkx dkx

¼
XNm

i¼0

Z k

�k

Z 1

�1
fie

�jkxx dxZi

� �
ejxkx dkx

� �

¼
XNm

i¼0

Z k

�k

Z 1

�1
fie

�jkxx dx

� �
ejxkx dkxZi

� �
: ð15Þ

Defining

ci ¼
Z k

�k

Z 1

�1
fie

�jkxx dx

� �
ejxkx dkx ði ¼ 1; 2; . . . ;NmÞ: ð16Þ

Substituting equation (16) into equation (15), yields

pðx; tÞ ¼
XNm

i¼0
ciZi ¼ Cg; ð17Þ

where C is a matrix including Nm number of vectors ci ði ¼ 1; 2; . . . ;NmÞ:
Pre-multiplying equation (13) with FTM yields

g ¼ FTMq: ð18Þ

Substituting equation (18) into equation (17) yields

p ¼ Cg ¼ CFTMq: ð19Þ

Define the transformation matrix by

W ¼ CFTM: ð20Þ

Then equation. (19) can be rewritten as

p ¼ Wq: ð21Þ

For a given position of the crank, the modal matrix F is known, so F andW ¼ CFTM are
also known.
Making the following transformations

M ¼ ðMW�1ÞW ¼ MeW; C ¼ ðCW�1ÞW ¼ CeW; ð22a; bÞ

K ¼ ðKW�1ÞW ¼ KeW; ð22cÞ

Substituting equation (22) into equation (12), yields

MeW.qqðx; tÞ þ CeW’qqðx; tÞ þ KeWqðx; tÞ ¼ DuðtÞ þ Fðx; tÞ: ð23Þ

Substituting equation (21) into equation (23), a new equation is obtained:

Me .ppðx; tÞ þ Ce ’ppðx; tÞ þ Kepðx; tÞ ¼ DuðtÞ þ Fðx; tÞ: ð24Þ

In equation (24), p can be regarded as a measure of the acoustic radiation power.
Namely, the acoustic radiation power will decrease as long as the value of p is suppressed.
So it is more convenient to study the acoustic radiation control using equation (24). In
other words, the acoustic radiation control problem is transformed to the vibration
control problem.
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4. THE QUADRATIC OPTIMAL CONTROL

A set of new eigenvalues oei ði ¼ 1; 2; . . . ;NmÞ and corresponding eigenvectors ji ði ¼
1; 2; . . . ;NmÞ can be obtained by solving the homogeneous equation of equation (24). p can
be described with ji as follows:

pðx; tÞ ¼
XNm

i¼0
jimi ¼ ul: ð25Þ

Assuming that the eigenvectors ji are normalized vectors, we have

uTMeu ¼ I ; uTKeu ¼ X2
e : ð26a; bÞ

Substituting equation (25) into equation (24) and pre-multiplying by uT; with the
proportional viscous damping assumption, equation (24) can be decoupled as

.ll þ 2feXe ’ll þ X2
el ¼ uTDuþ uTF: ð27Þ

Equation (27) can be rewritten in the form of state space as follows [9, 14]:

’xx ¼ Axþ Bf; ð28Þ
where

x ¼
l

’ll

" #
; A ¼

0 I

�Y �Z

" #
; B ¼

0

I

" #
;

f ¼ fctr þ fext; fctr ¼ uTDu; fext ¼ uTF;

Y ¼

. .
.

o2ei

. .
.

2
6664

3
7775; Z ¼

. .
.

2zeioei

. .
.

2
6664

3
7775;

where zei is the new ith modal damping factor.
Typically, not all of the Nm modes need to be controlled, so the design problem can be

truncated. To this end, we partition the Nm modes into Nc controlled modes and Nr

residual modes. Accordingly, the state vector x can be partitioned into two parts:

x ¼
xc

xr

" #
; ð29Þ

where

xc ¼
lc

’llc

" #
; xr ¼

lr

’llr

" #
;

lc is the modal co-ordinates of the controlled modes, lr is the modal co-ordinates of the
residual modes.
Accordingly, fctr is also partitioned into two parts:

fctr ¼
fc

fr

" #
; ð30Þ

where fc is the modal control force vector of controlled modes, while fr is the modal
control force vector of residual modes, and fc is given by

fc ¼ uTc Du: ð31Þ
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For linear feedback of the controlled modes, the control law is [14, 15]

fc ¼

f1

f2

..

.

fNc

2
666664

3
777775 ¼ �Gx ¼ �G1lc �G2 ’llc; ð32Þ

where

G ¼
G1

G2

" #
;

G1 ¼

g11

. .
.

g1i

. .
.

g1Nc

2
6666666664

3
7777777775
; G2 ¼

g21

. .
.

g2i

. .
.

g2Nc

2
6666666664

3
7777777775
:

Introducing the following quadratic performance index:

J ¼ 1

2

Z t2

t1

ðxTQxþ fTc RfcÞ dt

¼ 1

2

XNc

i¼1

Z t2

t1

ðo2eim
2
i þ ’mm2i þ rif

2
i Þ dt; ð33Þ

Q ¼

o2e1

. .
.

o2ei

. .
.

o2eNc

1

. .
.

1

2
6666666666666666664

3
7777777777777777775
2Nc2Nc

; R ¼

r1

. .
.

ri

. .
.

rNc

2
6666666664

3
7777777775

NcNc

;

where Q is a positive-definite weighing matrix, R is a semi-definite weighing matrix.
In equation (33), the first term denotes the potential energy of the ith mode, the second

term denotes the kinetic energy of the ith mode, and the third term denotes the energy
expanded by the ith modal control force.
Using modal control theorem [12], the optimal modal control force fc can be obtained

by maximum theorem, and the ith modal gain is given by

g1i ¼ oei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2ei þ r�1i

q
� o2ei; g2i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�1i þ 2g1i

q
: ð34a; bÞ
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According to equation (31), the control force output of the actuators can be written as

u ¼ ðFTc DÞ�1fc: ð35Þ

5. FEEDBACK CONTROLLER

It should be noted that in the above analysis, fc is the function of modal displacement lc

and modal velocity ’llc; while it is impossible to measure lc and ’llc directly. In addition, the
above analysis is carried out based on equation (24). It is necessary to describe fc in the
form of general co-ordinate vector qðx; tÞ; which can be directly measured. In other words,
we should find out the relationship between qðx; tÞ and the parameters lc and ’llc:
At present, piezoelectric elements are widely used as actuators and sensors, the output

of piezoelectric sensors are related with the deformation of structure plant. Here, we use
proportional–differential (PD) controller as the feedback controller to implement
quadratic optimal control. It is necessary to find the relationship between the gains of
the PD controller and the modal control gains given by equation (34).
Substituting equation (21) into equation (25) yields

Wq ¼ ul: ð36Þ

Pre-multiplying the above equation by W�1; one obtains

q ¼ W�1ul: ð37Þ

Assuming that the number of the piezoelectric sensor is m; then the control force is given
by

Fctr ¼ Du ¼
Xm

j¼1
Klj þ Kdj

d

dt

� �
HjqFctr ¼ Du ¼

Xm

j¼1
Klj þ Kdj

d

dt

� �
Hjq; ð38Þ

where Klj; Kdj are proportional and differential gains, respectively, Hj is the relationship
matrix between the jth sensor and the displacement of the structure nodes.
The modal control force of the Nc controlled modes can be expressed as

fc ¼ uTc Du ¼ uTc Fctr ¼ uTc
Xm

j¼1
Klj þ Kdj

d

dt

� �
HjW

�1ul: ð39Þ

Properly selecting the gains Klj and Kdj ; the follwing equations can be satisfied:

fuig
T
Xm

j¼1
KljHjW

�1fukg ¼
g1i; i ¼ k

0; i=k
ði; k ¼ 1; 2; . . . ;NcÞ;

(
ð40aÞ

fuig
T
Xm

j¼1
KdjHjW

�1fukg ¼
g2i; i ¼ k

0; i=k
ði; k ¼ 1; 2; . . . ;NcÞ:

(
ð40bÞ

Then the control will achieve the effort of the optimal controller described above.
Equation (40) can be rewritten as

HW�1f %KKlg ¼ fg1g; HW�1f %KKdg ¼ fg2g; ð41a; bÞ

where H ¼ ½H1 � � � Hm�T; f %KKlg ¼ fKl1 � � � KlmgT; f %KKdg ¼ fKd1 � � � KdmgT; and fg1g ¼
fg11 � � � g1Nc

gT; fg2g ¼ fg21 � � � g2Nc
gT:
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The gains of the PD controller is given by

f %KKlg ¼ ðHW�1Þ�1fg1g; f %KKdg ¼ ðHW�1Þ�1fg2g: ð42a; bÞ

If Nc ¼ m; then ðHW�1Þ�1 is the inverse matrix of HW�1; otherwise ðHW�1Þ�1 is the
general inverse matrix of HW�1:

6. SIMULATION AND RESULTS

In order to verify the validity of the proposed control methodology, a computer
simulative analysis is carried out on a mechanism shown in Figure 1. The crank and
follower link is rigid, only the coupler link is flexible. The structural parameters of the
mechanism are listed in Table 1, material parameters are listed in Table 2. A pair of
actuators and a pair of sensors are bonded on the coupler link. The actuators are
manufactured from piezoelectric ceramic with thickness 0�5mm, and the sensors from
piezoelectric polymer with thickness 0�2mm. The two actuators are located at one- and
three-fourth of the length of the coupler link respectively. In this study, the coupler link is
modelled by 12 finite elements. The crank speed is 600 r.p.m. The first six modes are used
to calculate the response of the system while the first three modes are taken as controlled
modes, i.e., Nc ¼ 3 and Nr ¼ 3: The results of the simulation are shown in Figures 3–7.
Figure 3 shows the optimal control force in a cycle of motion of the mechanism, in

which solid curve is the output of the actuator near the crank, and the dashed one is the
output of the actuator near the follower link. Since the excitation is transferred from crank
to coupler link and follower link, the output of the actuator near the crank is greater than
that of the other actuator.
Figure 4 shows the control voltage in a cycle of motion of the mechanism. The solid

curve is the voltage implemented on the actuator near the crank, and the dashed one is
that implemented on the actuator near the follower link. Since the voltage is linear to the
control force, the shape of these two curves is similar to the two curves shown in Figure 3.
Table 1

Size parameters of the mechanism

Parameters OA AB BC OC

Length (m) 0�1 0�48 0�4 0�4
Width (m) 0�048 0�048 0�048 }

Thickness (m) 0�005 0�005 0�005 }

Table 2

Material parameters of the mechanism

Parameters Plant Piezoelectric actuators Piezoelectric sensors

Young’s modulus (N/m2) 7�102 1010 1�17 1011 0�15 1010
Poisson’s coefficient 0�25 0�25 0�25
Volumetric density (kg/m3) 2712 7500 1760



Figure 3. The optimal control force.

Figure 4. The control voltage.
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It should be noted that, a certain piezoelectric ceramic actuator can only stand voltage in a
certain region, when the voltage implemented exceeds this region, the actuator will lapse.
Figure 5 shows the comparison of the wave number spectrum of the structural vibration

while the crank is located at y ¼ 90o: Similar results can be also be obtained when the
crank is located in other locations. In this study, the acoustic wave number is k ¼ o=c ¼
0�185: It can be seen that the components that satisfy kx5k in the wave number spectrum
are suppressed after control.
Figure 6 shows the comparison of the radiated sound power in one cycle of operation

with and without control. The solid curve shows the acoustic power level without control,
and the dashed curve is that with control. It is seen that the radiated sound power is
successfully suppressed after the control force is applied.
Figure 7 shows the comparison of the sound pressure at a certain point in one cycle of

operation with and without control. The point studied is located at r ¼ 1�20m, y ¼ 20o;
g ¼ 0o (the meaning of the parameters is shown in Figure 2). The solid curve is the sound



Figure 5. Comparison of the vibration wave number spectrum with and without control.

Figure 6. Comparison of the radiated sound power with and without control.

Figure 7. Comparison of the sound pressure with and without control.
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pressure without control, and the dashed one is that with control. It is seen that the sound
pressure at the point is attenuated after the control force is applied. The maximum of the
sound pressure at this point is decreased by about 15 dB after control.

7. CONCLUSION

In this paper, wave number analysis of the structural acoustic radiation is carried out on
the flexible coupler link of a linkage mechanism. The result reveals that in the wave
number spectrum of structural vibration of the coupler link, only those wave number
kx 2 ½�k; k� have contributions to the acoustic radiation, while the rest components in the
wave number spectrum do not have contributions to the structural acoustic radiation.
Based on this result, a new equation of motion whose configuration vector directly reflects
the radiated sound power is presented. On the basis of the new equation, a quadratic
optimal sound radiation control method is developed. Simulation results show that the
method presented is valid.
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